a2 United States Patent

Gandrabur et al.

US009330089B2

US 9,330,089 B2
May 3, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

METHOD AND APPARATUS FOR A MULTI
I/O MODALITY LANGUAGE INDEPENDENT
USER-INTERACTION PLATFORM

Applicant: Nuance Communications, Inc.,
Burlington, MA (US)

Inventors: Simona Gandrabur, Verdun (CA); Eric

Buist, Montreal (CA); Andrei Dragoi,

Montreal (CA); Alireza Salimi,

Montreal (CA)

Assignee: Nuance Communications, Inc.,

Burlington, MA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/934,668

Filed: Novw. 6, 2015
Prior Publication Data
US 2016/0070695 Al Mar. 10, 2016

Related U.S. Application Data

Continuation of application No. 13/960,755, filed on
Aug. 6, 2013, now Pat. No. 9,214,156.

Int. Cl1.

G10L 15/00 (2013.01)

GI10L 15/18 (2013.01)

GO6F 1727 (2006.01)

U.S. CL

CPC ... GO6F 17/2785 (2013.01); GO6F 172715

USPC oo 704/1, 9, 10, 257, 270-275
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,377,913 Bl 4/2002 Coffman et al.
6,701,294 Bl 3/2004 Ball et al.
6,704,708 Bl 3/2004 Pickering
7,277,854 B2 10/2007 Bennett et al.
7,472,060 Bl 12/2008 Gorin et al.
9,214,156 B2 12/2015 Gandrabur et al.
2003/0088421 Al 5/2003 Maes et al.
2005/0171779 Al 8/2005 Joublin
2015/0046168 Al 2/2015 Gandrabur et al.

Primary Examiner — Jesse Pullias
(74) Attorney, Agent, or Firm — Hamilton, Brook, Smith &
Reynolds, P.C.

(57) ABSTRACT

Automated user-machine interaction is gaining attraction in
many applications and services. However, implementing and
offering smart automated user-machine interaction services
still present technical challenges. According to at least one
example embodiment, a dialogue manager is configured to
handle multiple dialogue applications independent of the lan-
guage, the input modalities, or output modalities used. The
dialogue manager employs generic semantic representation
of user-input data. At a step of a dialogue, the dialogue man-
ager determines whether the user-input data is indicative of a
new request or a refinement request based on the generic
semantic representation and at least one of a maintained state
of the dialogue, general knowledge data representing one or
more concepts, and data representing history of the dialogue.
The dialogue manager then responds to determined user-
request with multi-facet output data to a client dialogue appli-

(2013.01) cation indicating action(s) to be performed.
Field of Classification Search
CPC e GOO6F 17/02 20 Claims, 7 Drawing Sheets
Dialogus;
~ Say “consult agenda” or “add a new
meeting’
- schedule a meeting
ASR:
1. Schedule a mesting
Raw NLU:
1. [Altributeagenda) [Attrbute meeting]
2. Hntentionadd] Attributeimeeting]
FINAL INTERPRETATION: —r
1. Hntentiomadd] AMibulemesiing] . o
Context: # Intention is in focus, favor 2.

US 9,330,089 B2

Sheet 1 of 7

May 3, 2016

U.S. Patent

LB
) i
™ |
i Y] ———
- \\\\
06~
WILSAS

ONINTYE

- {18
NCUYO Y INSINO

5

08
NOWYOMddY LNETD

\ B e e e s e o 5 et s e
04

US 9,330,089 B2

Sheet 2 of 7

May 3, 2016

U.S. Patent

B0V LN

554900V ONBIOVH

(HFO0FTAON TYEaNTD ‘SINIOY)
Adtddi 378YShEY

¢

2 &

¥ ¥ ¥

NGO NOUYTSNYHL |4
NOLLOVHLSHEY

SO IHOD Ll SNOUYO Y
WG AT MY

5

¥
RRRRRRRRRRARRRRRR
ARRRRRRRARRRARARARR

&

¥

ez \oez

AYHAHILINI O

U.S. Patent May 3, 2016

Sheet 3 of 7

US 9,330,089 B2

REC

TNEWE

NEW ENTRY |

S

REFINEMENT OF

EivE

NTRY A

<. PREVIOUS
349\ . USER-REQUESTS ; f330
SEND A NEW QUERY TO BACKEND FILTER ITEMS WITH
SYSTEM BASED ON NEW ENTRY - NEW ENTRY
Q
<l _MANY TEMS
SINGLE ITEM ” MULTIPLE [TEMS
370 NG -
ANNR ITEMS } ek
SEND ITEM 10 INFORM USER AND
CLIENT ARPLICATION REQUEST MORE INFORMATION
388~\

SEND ERROR MESSAGCE
TO CLIENT APPLICATION

FiG. 3

US 9,330,089 B2

Sheet 4 of 7

May 3, 2016

U.S. Patent

Yy Ol

‘7 JOARS SNO0) U ST UDHUSIU] J BN .
[Bugeswienguiy] [ppeuogue] 4

NOLLY LA 30N TYNES

[Bunesurainguny} ippeiuoaueiu] 7
[Buesursnauy] [epusbesinquiy])
41N MRy
mmmmmﬁ 2 3inp3usy i
Y

Bunssu B sinpaung -

Bunssw

mau e ppe, 1o epusle ynsuoo, Aeg -
anfomin

US 9,330,089 B2

Sheet S of 7

May 3, 2016

U.S. Patent

d¥ id

AJISBIY LWOY
uogusiu Bussiw aonpap (ioydeuy U uogusiu)
BpUSSINGUY ‘(sn00By uonedsdns
[o1ozis1ivaaegiepuste enguny]
lisenbayuonusiug]
‘hiojsiHenbofig/eIBISIRIeg
AN ///M A

(01025 Lp0stegllepusBesnguy] hsenbaruogueuy]
'NOLVIZHdYILNG TYNId

[0102/51v0:91e(]]
AYVIN MEY
MOLIOUIOY 1NOGR MOM
HEY
MOLOWIOY SDURSW OU BARY NOA
L ARDLIOUI0L INOUR MO
| AW wew,
1o siuelep Bunesw sioul, Aeg Aejial] 1pey wioy wdy 1 Aepo Bunsew aifiuis v aazy noj
2 Aepoy epualie AW s 1BUpL
anfioeig

US 9,330,089 B2

Sheet 6 of 7

May 3, 2016

U.S. Patent

O Ol

SO | SRl
UL U0 JoNsY B &1 eburi-aul} auo tadoos -
{1661 =0un] Jgoidioud
<< {0G =8t Jaosdioud
NS N00RNE BI04 golgloud ~
- Buisn
‘Twidpwde] povord saly uospsp BuLossay SqUBBS
{(aBpapouy [2isush) sWi < = JqUIny -
JBAOS
~3W el oG Buisn wdoneo <= J0080 -
uonenfiquiesic] squRwes

lagspeuy) g
009y swit] loopewitl loogy eyl 72
[co1-oogyeull 7y

N 'NOLLYLIHJHI LN TYNS
= [(00v0:e00E0euLl ¢

lLagseoaull g
[yusqunn] [zuequnp] [guequnn 7y

VTN MY
NG} 0} o) 7
NG, OM] B34 g

A8y
N0y 0] 881}
¢OUH] 1EUM 1Y

-enfiopig

US 9,330,089 B2

Sheet 7 of 7

May 3, 2016

U.S. Patent

4y oid

(D1ep-WB N0 | 600Z/S 160N < (BIBpAUeLND | 6002/61/01)d
BBDBIMOU-DUOAA

BO0Z '60 1900100 = SIBP-USND XERO

. natuew vegeH

ik Bupjueley quedpnied] loonl ewit] BO0Z/E LGN

3

~\

”mwmgw {Bunsaw enguny] [ppe uojuas]
[nanen VeusH

nuedioied] (0004 BwiL] [6002/6410}
epeq] [Bugesii ejnquny] [ppe uogua]

't

‘1N deag

[nenmen uageH

wuedoied; [20001 ewit] [6002/5101
:ejeq) [Bupssus ayngupy] [ppe uopueps]
[naupiep) vegeH

quedioied] (20001 Bwit] [B00Z/E160
ejeq] [Bupeew enquily] [ppe ruojusp]

b

1IN Ay

Heday naiiedl iim ug

© USBUIYL 1890100 Aepsan Bunssul g ppe
1RG0y NSRBI UM us)

12 ussLy) Jaqedas Aepseny Buneaw e ppe

HBG8H NBIIeRY Uim
uag Je ueapy seqojor Aepsen] Bunesul e poy

144

anfiorig

US 9,330,089 B2

1
METHOD AND APPARATUS FOR A MULTI
I/O MODALITY LANGUAGE INDEPENDENT
USER-INTERACTION PLATFORM

RELATED APPLICATION

This application is a continuation of U.S. application Ser.
No. 13/960,755, filed Aug. 6, 2013. The entire teachings of
the above application are incorporated herein by reference.

BACKGROUND OF THE INVENTION

Achieved advances in speech processing and media tech-
nology lead to wide use of automated user-machine interac-
tion across different applications and services. Using an auto-
mated user-machine interaction approach, businesses may
provide customer services and other services with relatively
inexpensive cost.

SUMMARY OF THE INVENTION

According to at least one example embodiment, a method
and corresponding apparatus for automatically managing a
dialogue with a user comprises transforming, at a dialogue
manager, user-input data received from a client dialogue
application into a generic semantic representation, the
generic semantic representation being independent of a lan-
guage and an input modality associated with the user-input
data; determining, by the dialogue manager, whether the user-
input data is indicative of a new request or a refinement
request refining one or more previous requests by the user,
based on the generic semantic representation and at least one
of'a maintained state of the dialogue, general knowledge data
representing one or more concepts, and data representing
history of the dialogue; and sending multi-facet output data,
indicative of one or more actions for the client dialogue appli-
cation to perform the one or more actions being determined
based on a result of said determining whether the generic
semantic representation is indicative of a new request or a
refinement of a previous request.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more
particular description of example embodiments of the inven-
tion, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout
the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating embodi-
ments of the present invention.

FIG. 1 is an example computer system illustrating an
implementation of an automatic user-machine interaction
system, according to at least one example embodiment.

FIG. 2 is a block diagram illustrating components of a
dialogue manager, according to at least one example embodi-
ment.

FIG. 3 is a flowchart illustrating a method of managing a
dialogue, according to at least one example embodiment; and

FIGS. 4A-4D illustrate examples of how user-input data is
processed at different stages.

DETAILED DESCRIPTION OF THE INVENTION

A description of example embodiments of the invention
follows.

With significant advances achieved in speech processing in
general, and speech recognition in particular, a wide range of

10

20

40

45

50

60

65

2

automated speech-based, user-machine, interaction services
have been deployed in connection with, for example, mobile
devices, call centers, banking applications, or the like. Such
automated speech-based interaction services enable users, for
example, to talk to their mobile devices, which respond in
return with audio utterances. Also, call centers employing an
interactive voice response (IVR) system enable a user to
interact with an automatic machine. Other interaction ser-
vices enable chat-based user-machine interaction. However,
chat-based interaction services are not fully automated and
typically involve a human agent responding to questions or
requests from a user in a chat conversation.

Services employing user-machine interaction include, for
example, dialogue applications for scheduling or accessing
travel itineraries, dialogue applications for location-based
services (e.g., for performing location-based searches), per-
sonal data dialogue applications (e.g., for accessing email,
calendar, and contact information, TV guide dialogue appli-
cations, banking dialogue applications, the like), or a combi-
nation thereof. Such services may be implemented as a single
application (e.g., IVR application), or a combination of a
client application (e.g., residing on client device) and a server
application (e.g., residing on a computer server).

Typical user-machine interaction systems are language
dependent, input/output (I/O) modality dependent, and back-
end system dependent. Specifically, typical user-machine
interaction systems support interaction services based on a
specific language, e.g., English, Chinese, Spanish, Arabic, or
the like. With respect to /O modalities, user-machine inter-
action systems usually support a single input or output modal-
ity, e.g., speech, chat or text, touch, or the like. Some user-
machine interaction systems, e.g., IVR applications, may
support two modalities, for example, by enabling a user to
make an input by uttering a specific word or clicking on a
specific button on the user’s device. However, in such cases
where one of two modalities may be selected, the user’s
vocabulary choice is very limited. Also, typical user-machine
interaction system implementation takes into account data
formatting within backend system(s) typically accessed for
retrieving data of interest. In other words, a typical user-
machine interaction system is usually designed and imple-
mented for a specific service with specific requirements, e.g.,
specific language, specific input and output modalities, or
backend system with specific data representation. Also, a
typical user-machine interaction service usually does not sup-
port multiple I/O modalities.

The dependence of a user-machine interaction system on a
specific corresponding language, specific input modality,
specific output modality, or data representation associated
with a corresponding backend system makes such a system
subject to functional limitations. Furthermore, such depen-
dency increases implementation complexity and prevents
reuse of system modules. In addition, the implementation
complexity and module-implementation redundancy associ-
ated with implementing various user-machine interaction
applications, e.g., subject to different requirements, translate
into high monetary cost and time delay associated with
deployment of such systems.

According to at least one example embodiment, a lan-
guage-independent user-machine interaction platform, or
mechanism, is configured to support multiple I/O modalities,
manage complex dialogue interaction(s), and interact with
backend system(s) regardless of corresponding data format.
The ability to manage complex dialogue interaction(s) (e.g.,
with relatively significant flexibility to users in terms of
vocabulary, context, and input modalities available) leads to
enhanced user experience. In other words, by providing such

US 9,330,089 B2

3

flexibility, by the user-machine interaction platform, while
still managing a meaningful dialogue with the user, leads to
dialogue dynamics similar to those in dialogues between two
humans. As such, relatively high user satisfaction may be
achieved.

FIG. 1 is an example computer system 10 illustrating an
implementation of an automatic user-machine interaction
system 100, according to at least one example embodiment.
The automatic user-machine interaction system 100 includes
a dialogue manager (DM) 150 residing, for example, on a
computer server 155. The DM 150 is configured to process
and manage dialogue interactions with one or more users 12.
The DM 150 is also configured to access a backend system 90,
associated with one or more computer servers 95, to retrieve
data that may be of interest to the user 12. The automatic
user-machine interaction system 100 also includes an auto-
matic speech recognition (ASR) module 120, configured to
translate speech signals into textual data, and a natural lan-
guage understanding (NL.U) module 130, configured to trans-
form textual data into semantic representations indicative of
corresponding meaning. According to an example implemen-
tation, the ASR module 120 and the NLU module 130 may
both reside on a computer server 125. The automatic user-
machine interaction system 100 is coupled, through a com-
munications network 11, to one or more client dialogue appli-
cations 80 residing on one or more corresponding client
devices 85, such as mobile devices, personal computers, lap-
top devices, fixed-line phones, or the like.

According to at least one example embodiment, a user 12
initiates a dialogue with the DM 150, for example, by launch-
ing a client dialogue application 80, associated with a user-
machine interaction service, on the corresponding user device
85. Example client dialogue applications 80 include dia-
logue-based, travel-scheduling, client applications, client
dialogue applications for location-based services, client dia-
logue applications for managing personal data, TV guide
dialogue-based client applications, banking dialogue-based
client applications, the like, or a combination thereof.

During the dialogue, user-input data, e.g., speech, text,
touch or click, etc., is provided by the user 12 to the client
application 80. The client application 80 is configured to
forward the user-input data provided by the user 12 towards
the automatic user-machine interaction platform 100.
Example embodiments of the automatic user-machine inter-
action platform 100 and the client application 80 enable the
user 12 to engage in a dialogue with the DM 150 using, for
example, chat-based input, speech based input, touch/click-
based input, or a combination thereof. In other words, the
automatic user-machine interaction system 100 is configured
to support multiple input/output (/O) modalities, and, there-
fore, provides the user 12 with flexibility to select from the
1/0 modalities supported by the corresponding client appli-
cation 80.

User-input speech data, forwarded by the client application
80, is sent to the ASR module 120. The ASR module 120 is
configured to perform speech recognition and transform a
user-input speech data entry into one or more corresponding
textual output entries. The ASR module 120 may also be
configured to provide ranking information or confidence
scores associated with each of the one or more textual output
entries. The confidence scores represent a measure of accu-
racy of the speech recognition outputs of the ASR module
120, whereas the ranking information is indicative of relative
correctness among multiple speech recognition outputs.

Textual data received at the automatic user-machine inter-
action system 100 is processed by the NLU module 130. The
NLU module 130 is configured to process textual data and

10

15

20

25

30

35

40

45

50

55

60

65

4

generate corresponding meaning interpretation(s). The
meaning interpretations are provided by the NLU module 130
in the form of semantic representations. The NLU module
130 may also be configured to provide confidence score(s)
associated with the generated meaning interpretation(s).
Input textual data to the NLU module 130 may be received
from the ASR module 120, e.g., if the user-input data is
speech data, or from the client dialogue application 80, e.g., if
the user-input data is textual data. In the case where user-input
data is provided by the user 12 through touch of display icons
or clicking buttons of the client device 85, the user-input data
may be sent directly to the DM 150, e.g., without passing
through the ASR module 120 or NLU module 130.

User-input data, or a representation thereof, is analyzed by
the DM 150 and a user-intent is determined. In other words,
each input entry by the user 12, or a representation thereof, is
analyzed to identify a corresponding request by the user 12.
The DM 150 then takes proper action(s) to respond to the
request of the user 12, and a response is sent back to the client
application 80. The client application 80 is configured to
render output data to the user 12 based on the response
received from the DM 150. Proper actions performed by the
DM 150 include accessing the backend system 90 to retrieve
data related to user’s request(s).

FIG. 2 is a block diagram illustrating components of the
DM 150, according to at least one example embodiment. The
DM 150 includes an input/output (I/O) interface 251 coupled
to plurality of communication channels 160. The communi-
cation channels 160 link the DM 150 to the NLU module 130,
the ASR module 120, and the client devices 85 through the
communications network 11. The I/O interface 251 is
coupled to an abstraction/translation module 252 configured
to transform input data, received through the I/O interface
251, into corresponding language-independent generic
semantic representation(s). According to an alternative
implementation, the abstraction/translation module 252 is
partofthe NLU module 130 oris a deep NLU module. In such
case, user-input data, regardless of the corresponding input
modality, is sent to the NLU module 130 for generating the
corresponding generic semantic representation(s).

The generic semantic representation may be in the form of
a list of semantic slots or a sequence of nested semantic slots.
Each semantic slot includes a language-independent string
indicative of a canonical meaning. According to at least one
example embodiment, instances of input data associated with
distinct input modalities, but indicative of the same meaning,
result in the same generic semantic representation. As such,
the generated language-independent generic semantic repre-
sentation is independent of the input modality associated with
the corresponding user-input data. For example, if the user-
input data is indicative of a selection of a particular item
among multiple items, the abstraction/translation module 252
is configured to generate the same generic representation
indicative of the user’s selection regardless of whether the
user 12 responded with speech, text, or touch/click. Also, a
touch-based user-input field results in a generic semantic
representation that an equivalent speech/text interaction
would have triggered. For example, touching a “Cancel” but-
ton is treated equivalent to saying or typing “cancel that.”

The language-independent generic semantic representa-
tion(s), e.g., generated by the abstraction/translation module
252 or the NLU module 130, is then forwarded to a DM core
logic 254. The DM core logic 254 is configured to manage the
ongoing dialogue with the user 12. Specifically, the DM core
logic 254 is configured to analyze the generic semantic rep-
resentation(s), corresponding to a user-input data entry, iden-
tify a corresponding user request, and take proper action(s) to

US 9,330,089 B2

5

generate and send a response back to the user device 85. For
example, as part of the ongoing dialogue, the user 12 may
request information regarding a specific TV program. The
DM core logic 254 is configured to determine the context and
details of the user request. Then, the DM core logic 254
generates a query to retrieve data related to the user request
from the backend system 90. The query is sent to the backend
system 90 through the backend access interface 253. The
backend access interface 253 is configured to forward queries
and corresponding responses between the DM core logic 254
and the backend system 90. The backend system 90 includes,
for example, one or more databases associated with one or
more corresponding services, Internet servers, servers or
databases associated with a business entity, or the like.

Uponreceiving a response from the backend system 90, the
DM core logic 254 generates a multi-facet (or multi-faceted)
output (not shown) for sending to the client application 80.
The multi-faceted output includes language-dependent and/
or language-independent content. Language-dependent con-
tent includes, for example, content for rendering to the user 12
by the corresponding client application 80, such as text,
speech, or the like. Language-independent content includes,
for example, instructions to the client applications 80 and
semantic representations of prompts. The multi-facet (or
multi-faceted) output is sent to the client application 80
through the 1/O interface 251 and one or more of the commu-
nication channels 160. Upon receiving the multi-facet output,
the client application 80 is configured to cause corresponding
content to be rendered on the corresponding client device 85.

The DM 150 also includes a plurality of executable server
dialogue applications 256 coupled to the DM core logic 254.
According to at least one example embodiment, for each
client dialogue application 80, there is a corresponding server
dialogue application 256. Also, upon the user’s 12 launching
the client dialogue application 80, the DM core logic 254 is
made aware of the user’s action and is configured to launch a
corresponding server dialogue application 256. Each client
dialogue application 80 and corresponding server dialogue
application 256 corresponds to a dialogue-based service,
such as a travel scheduling service, location-based search
service, personal data access and management service, bank-
ing service, or the like. As such, the DM 150 is configured to
support and handle a plurality of dialogue applications
instead of being designed for a specific dialogue application.

The DM 150 also includes a re-usable library 257. The
re-usable 257 library may be stored as one or more databases
within at least one memory component (not shown), e.g.,
associated with the computer server 155. The re-usable
library 257 includes data representative of general, or world,
knowledge. The general knowledge is described in terms of
concepts. A concept represents a general knowledge idea, or
notion. A calendar, travel itinerary, TV program or movie,
bank account, etc., are examples of a concept. Concepts may
be linked. For example, a calendar concept is linked to a
meeting concept, which is, in turn, linked to duration and
participants concepts. Concepts may be implemented, for
example, as object-oriented classes or as nested data struc-
tures. A concept may also be associated with one or more
attributes or values. For example, a “DURATION” concept
expects an attribute or value indicating the value of the dura-
tion.

The re-usable library 257 also includes agents. Agents may
be viewed as distributed computation or processing modules,
e.g., associated with concepts, defining executable tasks or
sub-tasks. As such, server dialogue applications 256 may be
implemented in terms of the predefined agents. Client dia-
logue applications 80 may also be implemented in terms of

40

45

6

the same agents. In managing an ongoing dialogue, the DM
core logic 254 is configured to execute tasks or sub-tasks by
dispatching corresponding agents.

The generic semantic representation(s), e.g., obtained from
the abstraction/translation module 252 or the NLU module
130, may be in an application-specific format but is/are inde-
pendent of the corresponding language and the corresponding
1/0 modalities. As such, implementation of the server dia-
logue applications 256 is independent of the way the user-
input data is obtained, e.g., independent of the corresponding
language and corresponding 1/O modalities. That is, imple-
mentation of the server dialogue applications 256, or compo-
nents thereof, is decoupled from the corresponding language,
input/output specific surface implementation, or input-output
modalities. Furthermore, the implementation of the client
application 80 is decoupled from the specifics of the DM 150
and the corresponding DM core logic 254. In addition, the
DM 150 is enabled to support multiple client applications 80,
distinct languages, and distinct I/O modalities.

According to at least one example embodiment, the query
(not shown) generated by the DM core logic 254 includes a
target data source, operation, optional limit over the number
of returned results, and some attributes acting as modifiers or
constraints. The target data source may correspond to a con-
cept on which queries are performed, e.g., a calendar, while
constraints and modifiers are attributes of that concept. Com-
mon operations are selection, insertion, update and removal.
Selection and removal operations rely on constraints, inser-
tions require modifiers corresponding to the attributes of the
item to add, and modification requires both constraints and
modifiers.

The query may be encoded as a string of characters, using
some query language, or encoded as function calls into
objects representing data sources. When using the query lan-
guage, an application 256 calls a generic function accepting a
string of characters and returning a list of concepts. The
function also needs to provide a mechanism telling the caller
that the query is asynchronous and getting results will require
a new call later. The application 256 makes the query in the
appropriate language, calling the function without depending
on a particular implementation. When using the functional
representation, each data source has an interface defining the
allowed query functions. The application obtains a reference
to a data source and calls only the defined functions on that
data source. Each function has a specific name and a particu-
lar list of argument types, and returns a value of a determined
type.

There are two different types of implementations for the
data source interfaces: synchronous or asynchronous. The
synchronous implementations immediately provide the
requested data to the application 256 upon call. The data is
either in memory or backed by some kind of database or
distributed service. The asynchronous data sources, on the
other hand, do not return results immediately upon request.
They rather indicate that the result is not ready and need to be
called back with the same query to provide the obtained
result, after control is returned to the dialog manager and
given back to the application 256. Asynchronous data sources
require a special behavior of the application 256, which
slightly differs from synchronous-only data sources. When
the results are not ready, the application 256 must return
control to the DM core logic 254 and be prepared for being
called back and resent the exact same query. The DM core
logic 254 is the component making sure the query gets
executed, by running it in the background or sending it to
another remote component.

US 9,330,089 B2

7

According to an example implementation, data source
implementations are instantiated during the implementation
of the application 256 and are retrieved by the application
components by going through the DM core logic 254. The
instantiation logic, e.g., the DM core logic 254, is thus cen-
tralized rather than being spread across application compo-
nents, so implementations can be changed easily.

FIG. 3 is a flowchart illustrating a method of managing a
dialogue performed by the DM core logic 254, according to at
least one example embodiment. At block 310, the DM core
logic 254 receives a new entry as part of an ongoing dialogue.
The new entry is a generic semantic representation corre-
sponding to user-input data received from a client application
80. At block 320, the DM core logic 254 determines whether
the received new entry is indicative of a new user-request or a
refinement of one or more previously received user-requests.
For example, if the user 12 is looking for something interest-
ing to watch on TV, the user may start by requesting to learn
what movies are on tonight. Seeing a long, possibly-incom-
plete, drop-down list of search results, the user 12 starts
refining the request by uttering “How about comedies?” and
then “Is Adam Sandler on?” So far, these utterances are
clearly correlated, consecutive refinements. But then the user
12 asks “Any historic dramas?” At this point, is the user 12
still looking for movies with Adam Sandler or comedy mov-
ies? Probably not, but the user 12 is probably still looking for
movies that are on tonight. In other words, the DM core logic
254 determines, at block 320, whether there is a correlation
among a sequence of user-requests.

According to at least one example embodiment, the dia-
logue manager 150 is configured to employ a correlation
measure to determine whether a current request received from
the user 12 represents a refinement of previous requests
received from the user 12 or a new request that is independent
of previous requests. The correlation measure is evaluated
using one or more features, such as linguistic features, NLLU
features, dialogue context, dialogue history, dialogue scope,
or general knowledge. For example, with regard to linguistic
features, missing verbs, ellipses, or used pronouns are inter-
preted as indicative of a correlation between the current
request and previous request(s). As to NLU features, the NLLU
module 130 or the abstraction/translation module 252 inter-
pret certain wordings as indicative of concepts carried over
from context. For example, when a sentence starts with “how
about .. .,” the user intent determined based on previous user
requests applies to the current request, and the NLU module
130 or the abstraction/translation module 252 generates a
corresponding output: “INTENTION=context”” If, for
example, a sentence in the current user-request contains a
personal pronoun, e.g., “call her,” the NLU module 130 or the
abstraction/translation module 252 generates an output
“PERSON=context” indicating that the person referred to as
“her” is somebody mentioned in the conversation history. As
such, whenever the output generated by the NL.LU module 130
or the abstraction/translation module 252 contains concepts
with value equal to “context,” that is a reliable indication that
the current request is a refinement or, at least, carries over
context from previous request(s).

The output of the abstraction/translation module 252 or the
NLU module 130 includes one or more concepts, such as
“INTENTION,” “PERSON,” “PARTICIPANT,”
“DATE,” . . ., or the like. In the case when a given concept,
which is expected to be present, is detected to be missing
within the output of the abstraction/translation module 252
corresponding to the user-input data, then the lack of such
concept is interpreted as indicative of a refinement request.
For example, if the abstraction/translation module 252 gen-

10

15

20

25

30

40

45

50

55

60

8

erates an output with no “INTENTION” concept, but
includes one or more other concepts, such as “DATE,”
“TIME,” “PERSON, or the like, this is evidence of a context
carry-over in the current user-input data from a previous
user-input data. The DM core logic 254 is configured to
determine how far in the dialogue history the missing con-
cepts may be found. In other words, upon determining that an
expected concept is missing in the output of the abstraction/
translation module 252, the DM core logic 254 checks the
dialogue history to determine at which step of the dialogue
attributes associated with the missing concept are found.
According to at least one example embodiment, each step of
the dialogue is recorded in the dialogue history. The dialogue
history may also include a current set of selected items
retrieved from the backend system 90 based on previous steps
of the dialogue. A step of the dialogue is defined as a user-
input or a prompt by the dialogue manager 150.

In determining whether the user-input data is indicative of
a new request or a refinement request, boundaries of context
carry-over from previous user-request(s) to a current user-
request are configured based on dialogue scope or indepen-
dent stand-alone tasks. For example, considering an ADK
application for scheduling meetings, making restaurant res-
ervations, placing calls, sending emails, etc., some of these
tasks are recognized, e.g., by the DM core logic 254, as
incompatible so that no carry-over is allowed between any
two of such incompatible tasks. According to an example
scenario, sending emails and making restaurant reservations
are defined as incompatible tasks.

Another criterion that may be employed in determining
whether the user-input data is indicative of a new request or a
refinement request is the general knowledge data stored, for
example, in the reusable library 257. In other words, correla-
tion between concepts associated with different input data
may be determined based on semantic distance. For example,
the “ACTOR=Adam Sandler” has a close semantic distance
to “GENRE=comedy,” and these two concepts with the cor-
responding attributes have a high semantic correlation. How-
ever, the semantic correlation between “ACTOR=Adam San-
dler” and “GENRE=sports™ is much lower.

According to another example embodiment, determining
whether the user-input data is indicative of a new request or a
refinement request may also be based on the state of the
dialogue. The state of the dialogue may include one or more
values or attributes that define the user’s request(s) up to the
receiving of the generic semantic representation correspond-
ing to the current user-input data. The DM core logic 254 may
compare concepts and corresponding attributes in the generic
semantic representation with concepts and corresponding
attributes associated with the previous query sent to the back-
end system 90.

A person skilled in the art should appreciate that in deter-
mining whether the user-input data is indicative of a new
request or a refinement request, one or more correlation mea-
sure values may be computed based one or more features. The
dialogue manager 150 keeps track of the dialogue history, the
set of current selected items, or search results, at each step,
and the current state of the dialogue. At each new user-input,
the DM core logic 254 iterates through entries of the dialogue
history, from the previous user-request towards further away
interactions, and computes a measure of correlation. The
same approach may be applied by iterating through entries of
the state of the dialogue or the set of selected items. As soon
as the correlation measure is high enough, e.g., above a con-
figurable threshold, it is determined that the current user-
input data is indicative of a refinement request. Alternatively,
the correlation may be checked by comparing concepts and

US 9,330,089 B2

9

corresponding attributes associated with the generic semantic
representation against concepts and corresponding attributes
associated with other data available to the DM core logic. The
current user-input data may be determined to be indicative of
a refinement request or a new request by checking predefined
conditions instead of computing correlation measure values.

Upon determining that the user-input data is indicative of a
refinement request, a list of items (not shown) representing
search results is filtered at block 330. The list of items repre-
sents search results obtained, for example, from the backend
system 90 throughout previous steps of the dialogue. The list
of items is filtered based on concepts and corresponding
attributes in the generic semantic representation associated
with user-input data. A person skilled in the art should appre-
ciate that filtering may be performed either by maintaining
the list of items at the dialogue manager 150 and filtering the
maintained list of items by the DM core logic 254, or by
sending a refined query to the backend system 90 and receiv-
ing a corresponding response. However, if at block 320 the
DM core logic 254 determines that the user-input data is
indicative a new request, a new query corresponding to the
new request is sent to the backend system 90 atblock 340, and
a corresponding response is received at the dialogue manager
150. The response includes one or more items representing
search results associated with the query sent to the backend
system 90. The user-input data is determined to be indicative
of a new request if a predefined distance in time/dialogue
history is exceeded or if a task boundary is detected at block
320.

Upon receiving the filter list of items, or upon receiving a
response to the query sent to the backend system 90, the DM
core logic 254 checks at block 350 the number of items
associated with the filtered list or the received response. If the
number of items is determined to be equal to one, an indica-
tion of the single item is sent, at block 370, to the client
dialogue application 80 associated with the user 12. If the
number of items is determined to be larger than one, a mes-
sage or prompt is sent to the user 12, at block 360, informing
that multiple items corresponding to the user-request are
available. The user may further be asked to provide further
information allowing further filtering of the multiple items.
However, if it is determined that no items are available cor-
responding to the user-request, an error message is sent at
block 380 to the user 12 through the client dialogue applica-
tion 80.

According to at least one example embodiment, in imple-
menting generic item selection or filtering, e.g., at block 330,
a hierarchical representation of the items allowing retrieval of
items’ attributes is employed. Also, a selector/filtering
mechanism enabling selection based on a rank or an instance
of the item or item’s attributes is used. In the following, the
selector/filtering mechanism is referred to as the selector.
Each item is represented as a concept with corresponding one
or more values or attributes. The user-input data sometimes
does not include a specification of a full complex concept,
such as contacts, with full information or complete travel
itineraries, but rather only one or more attributes of the con-
cept. Upon sending to the user 12 an indication of a multi-
items list, the DM core logic 254 receives a response from the
user 12 or the corresponding client dialogue application 80.
Based on the received response, the DM core logic 254 reacts
according to one or more rules. For example, if an explicit
item rank is obtained, e.g., “the first,” and the rank is smaller
than the number of candidates, then the DM core logic 254 or
the selector selects the referred item and returns it to the user
12. If the given rank is higher than the number of candidates,

5

10

15

20

25

30

35

40

45

50

55

60

65

10

then the DM core logic 254 or the selector returns an error
message to the user 12 and waits for input.

However, if the user refers to a particular value, for
example, “2:30” in the case of selecting a time, the supplied
value is matched against one of the values associated with the
items in the list of items. If the value is matched, the corre-
sponding item is returned to the user 12 or retained in the
filtered set of items. Otherwise, the received value is further
processed by the DM core logic; for example, the received
value may be accepted as a new value or it may trigger a new
invocation of the selector. For two concepts to match, they
usually share the same name, their corresponding values
match, and any attribute they commonly define also match.
Value equality implies value matching for any concept, while
some concepts may extend the definition of matching beyond
equality. For example, two strings may be defined to match if
they share a common non-empty substring. For example, if
one of multiple candidate items presented to the user 12 has a
date value presented as Apr. 23, 2012 and the received
response has a date with only the day set to 23 and other
attributes missing, the selector matches the candidate. On the
other hand, if the received response has the day set to 23 and
month set to May, then the selector does not match the
received value to the presented item with date being Apr. 23,
2012. Also, if any attribute is obtained from user’s input, only
the item(s) with matching attributes is/are retained. For
example, when selecting an itinerary, if one obtained attribute
is a date, then any selected itinerary would have the same date
as the obtained date from the user 12. Matching follows the
same rules as for selection by item.

Moreover, the selection mechanism works over multiple
modalities through a language independent and input modal-
ity independent communication. In other words, the selec-
tion/filtering is performed based on the generic semantic rep-
resentation corresponding to the user-input data.

FIGS. 4A-4D illustrate examples of how user-input data is
processed at different stages. The “Dialogue™ describes
speech data played to the user 12 or uttered by the user 12. The
“ASR” describes the output of the ASR module 120 corre-
sponding to the user-input speech data. The “Raw NLU”
describes the output of the NLU module 130 based on the
output of the ASR module 120. The “FINAL INTERPRETA-
TION” refers to the interpretation of the user-input data by
dialogue manager 150.

AtFIG. 4A, the NLU module 130 generates two outputs in
response to the user-input data “schedule a meeting.” The DM
core logic 254 selects the second output of the NLLU module
130 since it includes an “intention” concept with intention
being within the scope of the dialogue.

At FIG. 4B, the NLU module 130 generates the date cor-
responding to “tomorrow” in response to the user-input data
“[h]ow about tomorrow.” The DM core logic detects that the
output of the NLU module 130 does not include an “inten-
tion” concept. Based on the dialogue history or the state of the
dialog, the DM core logic 254 determines the user intention
and generates an output including the user intention as well as
the date provided by the NLLU module 130, therefore, provid-
ing a complete description of the user request.

At FIG. 4C, the ASR module 120 provides two potential
textual outputs corresponding to user-input speech data
“three to four.” The NLU module 130 produces three poten-
tial interpretations of outputs of the ASR module 120. The
DM core logic 254 then makes use of general knowledge,
e.g., outlook general knowledge to rank the outputs provided
by the NLU module and select the most probable output. The
DM core logic 254 may further add the “intention” concept,

US 9,330,089 B2

11

e.g., based on the dialogue history, the state of the dialogue, or
the scope of the dialogue, once the most probable output is
selected.

At FIG. 4D, the DM core logic 254 makes use of general
knowledge, e.g., the current data to resolve ambiguity due to
multiple outputs provided by the NLU module 130. In other
words, given two potential dates associated with a meeting to
be added, the DM core logic 254 uses, for example, the
current date to select one of the potential dates.

It should be understood that the example embodiments
described above may be implemented in many different ways.
In some instances, the various methods and machines
described herein may each be implemented by a physical,
virtual or hybrid general purpose or application specific com-
puter having a central processor, memory, disk or other mass
storage, communication interface(s), input/output (I/O)
device(s), and other peripherals. The general purpose or
application specific computer is transformed into the
machines that execute the methods described above, for
example, by loading software instructions into a data proces-
sor, and then causing execution of the instructions to carry out
the functions described, herein.

As is known in the art, such a computer may contain a
system bus, where abus is a set of hardware lines used for data
transfer among the components of a computer or processing
system. The bus or busses are essentially shared conduit(s)
that connect different elements of the computer system, e.g.,
processor, disk storage, memory, input/output ports, network
ports, etc., that enables the transfer of information between
the elements. One or more central processor units are attached
to the system bus and provide for the execution of computer
instructions. Also attached to the system bus are typically [/O
device interfaces for connecting various input and output
devices, e.g., keyboard, mouse, displays, printers, speakers,
etc., to the computer. Network interface(s) allow the com-
puter to connect to various other devices attached to a net-
work. Memory provides volatile storage for computer soft-
ware instructions and data used to implement an embodiment.
Disk or other mass storage provides non-volatile storage for
computer software instructions and data used to implement,
for example, the various procedures described herein.

Embodiments may therefore typically be implemented in
hardware, firmware, software, or any combination thereof.

In certain embodiments, the procedures, devices, and pro-
cesses described herein constitute a computer program prod-
uct, including a computer readable medium, e.g., a removable
storage medium such as one or more DVD-ROM’s, CD-
ROM’s, diskettes, tapes, etc., that provides at least a portion
of the software instructions for the system. Such a computer
program product can be installed by any suitable software
installation procedure, as is well known in the art. In another
embodiment, at least a portion of the software instructions
may also be downloaded over a cable, communication and/or
wireless connection.

Embodiments may also be implemented as instructions
stored on a non-transitory machine-readable medium, which
may be read and executed by one or more processors. For
example, a non-transitory machine-readable medium may
include read only memory (ROM); random access memory
(RAM); magnetic disk storage media; optical storage media;
flash memory devices; and others.

Further, firmware, software, routines, or instructions may
be described herein as performing certain actions and/or
functions ofthe data processors. However, it should be appre-
ciated that such descriptions contained herein are merely for
convenience and that such actions in fact result from comput-

10

15

20

25

30

35

40

45

50

55

60

65

12

ing devices, processors, controllers, or other devices execut-
ing the firmware, software, routines, instructions, etc.

It also should be understood that the flow diagrams, block
diagrams, and network diagrams may include more or fewer
elements, be arranged differently, or be represented differ-
ently. But it further should be understood that certain imple-
mentations may dictate the block and network diagrams and
the number of block and network diagrams illustrating the
execution of the embodiments be implemented in a particular
way.

Accordingly, further embodiments may also be imple-
mented in a variety of computer architectures, physical, vir-
tual, cloud computers, and/or some combination thereof, and,
thus, the data processors described herein are intended for
purposes of illustration only and not as a limitation of the
embodiments.

While this invention has been particularly shown and
described with references to example embodiments thereof, it
will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by the
appended claims.

What is claimed is:

1. A method of automatically managing a dialogue with a
user, the method comprising:

generating a generic semantic representation based upon

received user-input data, the generic semantic represen-
tation being independent of a language and an input
modality associated with the received user-input data,
the generic semantic representation comprising at least
one of a list of semantic slots and a sequence of nested
semantic slots;

determining a user-intention based upon the received user-

input data, the generic semantic representation and at
least one of: a maintained state of the dialogue, concept
data representing one or more concepts, and history data
representing history of the dialogue;

performing selection of a list of data items based on any of

the concept data representing the one or more concepts
and attribute data representing one or more attributes
associated with the generic semantic representation; and

sending output data indicative of one or more actions for a

dialogue application to perform, the one or more actions
being determined based on a result of said determining
the user-intention.

2. The method according to claim 1, wherein each slot of
the semantic slots and the nested semantic slots includes a
language-independent representation indicative of canonical
meaning.

3. The method according to claim 2, wherein the language-
independent representation includes a string of text charac-
ters.

4. The method according to claim 1, wherein the list of data
items includes a hierarchical list of data items.

5. The method according to claim 1, wherein the selection
is further performed based upon at least one of a rank and an
instance associated with the list of data items.

6. The method according to claim 1, wherein a dialogue
manager is configured to provide a measure of accuracy of the
output data.

7. The method according to claim 1, wherein the input
modality includes at least one of speech, text, touch, and
computer device control.

8. The method according to claim 1, further comprising
updating the maintained state of the dialogue based on the
data representing the one or more attributes.

US 9,330,089 B2

13

9. The method according to claim 1, wherein the selection
is further based on at least one of the maintained state of the
dialogue, the concept data representing the one or more con-
cepts, and the history data representing the history of the
dialogue.

10. An apparatus for automatically managing a dialogue
with a user, the apparatus comprising:

a processor; and

a memory with computer code instructions stored thereon,

the processor and the memory, with the computer code

instructions, being configured to cause the apparatus to:

generate a generic semantic representation based upon
received user-input data, the generic semantic repre-
sentation being independent of a language and an
input modality associated with the received user-input
data, the generic semantic representation comprising
at least one of a list of semantic slots and a sequence
of nested semantic slots;

determine a user-intention based upon the received user-
input data, the generic semantic representation, and at
least one of: a maintained state of the dialogue, con-
cept data representing one or more concepts, and his-
tory data representing history of the dialogue;

perform selection of a list of data items based on any of
the concept data representing the one or more con-
cepts and attribute data representing one or more
attributes associated with the generic semantic repre-
sentation; and

send output data indicative of one or more actions for a
dialogue application to perform, the one or more
actions being determined based on a result of said
determining the user-intention.

11. The apparatus according to claim 10, wherein each slot
of the semantic slots and the nested semantic slots includes a
language-independent representation indicative of canonical
meaning.

12. The apparatus according to claim 11, wherein the lan-
guage-independent representation includes a string of text
characters.

13. The apparatus according to claim 10, wherein the list of
data items includes a hierarchical list of data items.

14. The apparatus according to claim 10, wherein the pro-
cessor and the memory, with the computer code instructions,
are configured to further cause the apparatus to perform selec-
tion based upon at least one of a rank and an instance associ-
ated with the list of data items.

15. The apparatus according to claim 10, wherein the pro-
cessor and the memory, with the computer code instructions,

14

are configured to further cause the apparatus to provide a

measure of accuracy of the output data.

16. The apparatus according to claim 10, wherein the input
modality includes at least one of speech, text, touch, and
5 computer device control.

17. The apparatus according to claim 10, wherein the pro-
cessor and the memory, with the computer code instructions,
are configured to further cause the apparatus to update the
maintained state of the dialogue based on the data represent-
ing the one or more attributes.

18. The apparatus according to claim 10, wherein the pro-
cessor and the memory, with the computer code instructions,
are configured to further cause the apparatus to perform selec-
tion based on at least one of the maintained state of the
dialogue, the concept data representing the one or more con-
cepts, and the history data representing the history of the
dialogue.

19. A non-transitory computer-readable medium with soft-
ware instructions stored thereon, the computer software
instructions, when executed by a processor, cause an appara-
tus to:

generate a generic semantic representation based upon

received user-input data, the generic semantic represen-
tation being independent of a language and an input
modality associated with the received user-input data,
the generic semantic representation comprising at least
one of a list of semantic slots and a sequence of nested
semantic slots;

determine a user-intention, based upon the received user-

input data, the generic semantic representation, and at
least one of: a maintained state of the dialogue, concept
data representing one or more concepts, and history data
representing history of the dialogue;

perform selection of alist of data items based on any of the

concept data representing the one or more concepts and
attribute data representing one or more attributes asso-
ciated with the generic semantic representation; and

send output data indicative of one or more actions for a

dialogue application to perform, the one or more actions
being determined based on a result of said determining
the user-intention.

20. The non-transitory computer-readable medium accord-
ing to claim 19, wherein each slot of the semantic slots and the
nested semantic slots includes a language-independent rep-
resentation indicative of canonical meaning.

10

15

20

25

30

35

40

45

#* #* #* #* #*

